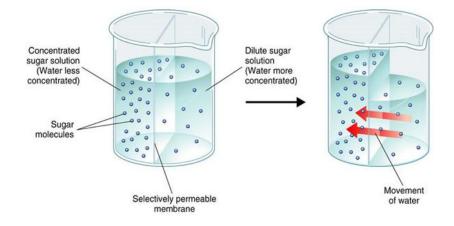
2.2 Osmosis Date: 04.02.2012

What is osmosis?

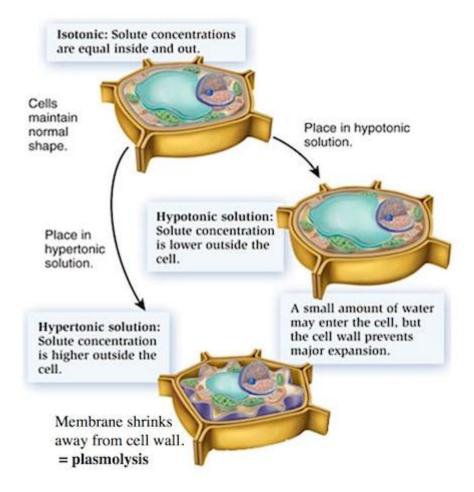
- Osmosis is the movement of <u>water</u> molecules from a solution of <u>higher water potential</u> to a solution of <u>lower water potential</u>, through a partially permeable membrane.
- Water moves DOWN the <u>water potential gradient</u>.


What is water potential and how is it related to osmosis?

- ❖ Water potential is a **measure** of tendency of water to move **from one place to another**.
- ❖ The term 'water potential' is always used/connected to OSMOSIS.
- ❖ A **dilute** solution <u>contains more water molecules</u> per unit volume than a **concentrated** solution therefore, has a **HIGHER** concentration than a concentrated solution.
- Q. Which one has a higher water potential? Ans: Beaker A More water, less sucrose molecules.

- When a partially permeable membrane separates two solutions of different water potentials, a water potentials gradient is established.
- When a water potential gradient is established, the process of osmosis will occur.

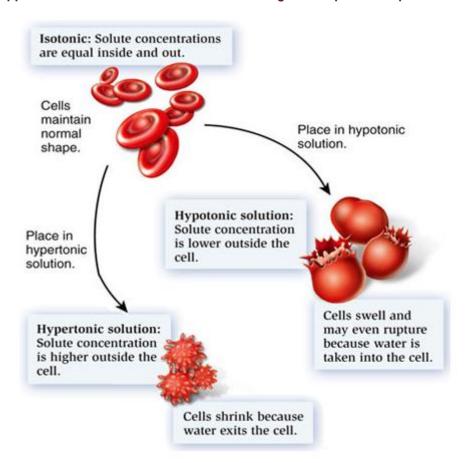
For example:



Remember:

The **cell wall** of plants = **permeable**!, While the **cell membrane** is = **partially permeable**!

How does osmosis affect living organisms?


- A plant cell <u>behaves differently</u> from an animal cell when placed in solutions with differing water potentials, due to the presence of the cell wall in plant cells.
- Q. What happens to a plant cell in a solution with high/low/equal water potential?

Isotonic solution		Hypertonic solution		Hypotonic solution	
0	The solute concentrations	0	The solute concentrations	0	The solute concentration is
	are equal on both sides –		are <u>higher outside</u>		lower outside the cell -
	equal water potential		compared to the cell sap -		high water potential
0	Therefore, normal		low water potential		outside.
	movement of water inside		outside.	0	Water molecules enter by
	and out.	0	Water molecules moves		osmosis.
0	Cell maintains its shape.		outside by osmosis.	0	Cell enlarges and becomes
		0	The cytoplasm shrinks away		turgid.
			from cell wall - <u>Cell</u>	0	Cell wall prevents cell from
			plasmolysis.		bursting.
•••	The turgidity of the cell with w	vator	is called turger, and the pres	ecure	e everted by the water on the

The turgidity of the cell with water is called turgor, and the pressure exerted by the water on the cell wall is the turgor pressure.

Q. What happens to an animal cell in a solution with high/low/equal water potential?

Isotonic solution	Hypertonic solution	Hypotonic solution	
 There is <u>equal water</u> <u>potential</u> inside and outside of the cell. Therefore, normal 	 There is low water potential outside of the cell, and high water potential inside the 	 There is <u>high water</u> <u>potential outside</u> the cell, and <u>low water potential</u> in the cytoplasm. 	
movement of water inside and out. Cell maintains its shape.	cytoplasm. Water molecules leaves by osmosis. The cell shrinks in size (crenated).	 Water molecules enter by osmosis. Cell expands and bursts. 	

- ❖ When the cell <u>shrinks</u> and <u>little spikes appear</u> on the <u>cell surface membrane</u>, this process is called <u>crenation</u>.
- An animal cell will become <u>dehydrated</u> and <u>eventually die</u> when placed in a solution of <u>low water</u> potential.

Q. Why is turgor important in plants?

- ✓ Turgor enables plant to <u>remain firm and erect</u> (due to turgor pressure within their cells).
- ✓ When there is <u>high evaporation</u> of water from the cells, they <u>lose their turgidity</u> and the <u>plant</u> <u>wilts</u>.
- Plasmolysis causes <u>tissues to become limp or flaccid</u>. Cells will be <u>killed if they remain</u> <u>plasmolysed for too long.</u>

